A Posteriori Error Estimation

1. Motivations & Preliminaries

1.1. « Truth » Problem statement

Let μDμ, evaluate s(μ)=(u(μ)) where u(μ)X satisfies a(u(μ),v;μ)=f(v),vX.

Assumptions :

  • linearity, coercivity, continuity

  • affine parameter dependence; and

  • compliance: =f, a symmetric

1.2. Reduced Basis Sample and Space

Parameter Samples: SN={μ1Dμ,,μNDμ}1NNmax, with S1S2SNmax1SNmaxDμ.

Lagrangian Hierarchical Space WN=span{ξnu(μn)uN(μn),n=1,,N}, with W1W2WNmaxXNX

1.3. Reduced basis approximation

Given μDμ evaluate sN(μ)=f(uN(μ);μ) where uN(μ)XN satisfies a(uN(μ),v;μ)=f(v;μ), vXN.

Recall:

  • RB Space: XN=«Gram-Schmidt»(WN)

  • uN(μ) unique (coercivity, continuity, linear dependence)

1.4. Coercivity and Continuity Constants

We assume a coercive and continuous

Recall that

  • coercivity constant (0<)α(μ)infvXa(v,v;μ)||v||2X,

  • continuity constant γ(μ)supwXsupvXa(w,v;μ)

Affine dependence and parametric coercivity We assume that a: X\times X \times \mathcal{D} \rightarrow \mathbb{R} is

  • affine : a(u,v;\mu) = \displaystyle\sum_{q=1}^{Q_a} \Theta^q_a(\mu)\ a^q( u, v ),\, \forall u,v \in X

  • and paraletrically coercive : \Theta^q_a(\mu) > 0\quad \forall \mu \in \mathcal{D}, \, 1 \leq q \leq Q_a and a^q(u,v) \geq 0\quad \forall u,v \in X, \, 1 \leq q \leq Q_a

1.5. Inner Products and Norms

  • energy inner product and associated norm (parameter dependant)

\begin{aligned} (((w,v)))_\mu &= a(w,v;\mu) &\ \forall u,v \in X\\ |||v|||_\mu &= \sqrt{a(v,v;\mu)} &\ \forall v \in X \end{aligned}
  • X-inner product and associated norm (parameter independant)

\begin{aligned} (w,v)_X &= (((w,v)))_{\bar{\mu}} \ (\equiv a(w,v;\bar{\mu})) &\ \forall u,v \in X\\ ||v||_X &= |||v|||_{\bar{\mu}} \ (\equiv \sqrt{a(v,v;\bar{\mu})}) & \ \forall v \in X \end{aligned}

2. Bound theorems

2.1. Questions

  • What is the accuracy of u_N(\mu) and s_N(\mu) ? Online

\begin{aligned} \|u(\mu)-u_N(\mu)\|_X &\leq \epsilon_{\mathrm{tol}}, \quad \forall \mu \in \mathcal{D}^\mu\\ |s(\mu)-s_N(\mu)\|_X &\leq \epsilon^s_{\mathrm{tol}}, \quad \forall \mu \in \mathcal{D}^\mu\\ \end{aligned}
  • What is the best value for N ? Offline/Online

    • N too large \Rightarrow computational inefficiency

    • N too small \Rightarrow unacceptable error

  • How should we build S_N ? is there an optimal construction ? Offline

    • Good approximation of the manifold \mathcal{M} through the RB space, but

    • need for well conditioned RB matrices

2.2. A Posteriori Error Estimation: Requirements

We shall develop the following error bounds \Delta_N(\mu) and \Delta^s_N(\mu) with the following properties

  • Rigorous : 1 \leq N \leq N_{\mathrm{max}},

\begin{aligned} \|u(\mu)-u_N(\mu)\|_X &\leq \Delta_N(\mu), \quad \forall \mu \in \mathcal{D}^\mu\\ |s(\mu)-s_N(\mu)| &\leq \Delta^s_N(\mu), \quad \forall \mu \in \mathcal{D}^\mu \end{aligned}
  • reasonably sharp 1 \leq N \leq N_{\mathrm{max}}

\begin{gathered} \frac{\Delta_N(\mu)}{\|u(\mu)-u_N(\mu)\|_X} \leq C,\\ \frac{\Delta^s_N(\mu)}{|s(\mu)-s_N(\mu)|} \leq C,\\C\approx 1 \end{gathered}
  • efficient : Online cost depend only on Q and N and not \mathcal{N}.

2.3. u_N(\mu) : Error equation and residual dual norm

Given our RB approximation u_N(\mu), we have e(\mu) \equiv u(\mu) - u_N(\mu) that satisfies a( e(\mu), v; \mu ) \ = \ r( u_N(\mu), v; \mu ), \forall v \in X, where r( u_N(\mu), v; \mu ) = f(v) - a( u_N(\mu), v; \mu ) is the residual. We have then from coercivity and the definitions above that

||e(\mu)||_{X} \ \leq\ \dfrac{||r( u_N(\mu), v; \mu )||_{X'}}{\alpha(\mu)}\ =\ \dfrac{\varepsilon_N(\mu)}{\alpha(\mu)}

2.4. Dual norm of the residual

Proposition

Given \mu \in \mathcal{D}^\mu, the dual norm of r(u_N(\mu),\cdot;\mu) is defined as follows

\begin{aligned} ||r(u_N(\mu),\cdot;\mu)||_{X'} & \equiv \sup_{v\in X} \frac{r(u_N(\mu),v;\mu)}{||v||_X}\\ & = ||\hat{e}(\mu)||_X \end{aligned}

where \hat{e}(\mu)\in X satisfies (\hat{e}(\mu),v)_X = r(u_N(\mu),v;\mu)

The error residual equation can then be rewritten a( e(\mu), v; \mu ) \ = (\hat{e}(\mu),v)_X, \quad \forall v \in X

2.5. u_N(\mu) : Definitions of energy error bounds and effectivity

Given \alpha_\mathrm{LB}(\mu) a nonnegative lower bound of \alpha(\mu):

\alpha(\mu)\geq {\alpha_{{\mathrm{LB}}}}(\mu)\geq \epsilon_{\alpha} \alpha(\mu), \epsilon_{\alpha} \in ]0,1[,\, \forall \mu \in \mathcal{D}^\mu

Denote \varepsilon_N(\mu) = \|\hat{e}(\mu)\|_X = \|r(u_N(\mu),v;\mu\|_{X'}

Definition : Energy error bound
\Delta^{\mathrm{en}}_N(\mu) \ \equiv \ \frac{\varepsilon_N(\mu)}{\sqrt{{\alpha_{{\mathrm{LB}}}}(\mu)}}
Definition : Effectivity
\eta^{\mathrm{en}}_N(\mu) \ \equiv \ \frac{\Delta^{\mathrm{en}}_N(\mu)}{|||e(\mu)|||_\mu}
Proposition : Energy error bound
1 \ \leq\ \eta^{\mathrm{en}}_N(\mu) \ \leq \sqrt{\frac{{\gamma_{{\mathrm{UB}}}}(\mu)}{{\alpha_{{\mathrm{LB}}}}(\mu)}}, \quad 1 \leq N \leq N_{\max}, \quad \forall \mu\ \in \ \mathcal{D}^\mu

Remarks :

  • Rigorous : Left inequality ensures rigorous upper bound measured in ||\cdot||_{X} , i.e. ||e(\mu)||_{X} \leq \Delta_N(\mu),\ \forall \mu \in \mathcal{D}^\mu

  • Sharp : Right inequality states that \Delta_N(\mu) overestimates the « true » error by at most \gamma(\mu) / {\alpha_{{\mathrm{LB}}}}(\mu)

  • for a paralmetrically coercive and symmetric

\theta^{\bar{\mu}} \equiv \frac{\Theta^{\max,\bar{\mu}}_a(\mu)}{\Theta^{\min,\bar{\mu}}_a(\mu)} = \frac{\gamma_{\mathrm{ub}}(\mu)}{\alpha_{\mathrm{lb}}(\mu)}

2.6. s_N(\mu) : output error bounds

Proposition : Output error bound
1 \ \leq\ \eta^s_N(\mu) \ \leq \dfrac{{\gamma_{{\mathrm{UB}}}}(\mu)}{{\alpha_\mathrm{LB}}(\mu)}, \quad 1 \leq N \leq N_{\max}, \quad \forall \mu\ \in \ \mathcal{D}^\mu

where \Delta^s_N (\mu) = {\Delta_N^{\mathrm{en}}}(\mu)^2 and \eta^s_N(\mu)\equiv \frac{\Delta^s_N(\mu)}{s(\mu)-s_N(\mu)}

Rapid convergence of the error in the output : Note that the error in the output vanishes quadratically

2.7. Relative output error bounds

We define

  • the relative output error bound \Delta^{s,rel}_N (\mu) \equiv \frac{\|\hat{e}(\mu)\|^2_X}{ \alpha_\mathrm{lb}(\mu) s_N(\mu)}= \frac{\Delta_N^{\mathrm{en}}(\mu)^2}{s_N(\mu)}

  • the relative output effectivity \eta^{s,rel}_N(\mu)\equiv \frac{\Delta^{s,rel}_N(\mu)}{s(\mu)-s_N(\mu)/s(\mu)}

Proposition : Relative output error bound
1 \ \leq\ \eta^{s,rel}_N(\mu) \ \leq 2 \frac{{\gamma_{{\mathrm{UB}}}}(\mu)}{{\alpha_{{\mathrm{LB}}}}(\mu)}, \quad 1 \leq N \leq N_{\max}, \quad \forall \mu\ \in \ \mathcal{D}^\mu

for \Delta^{s,rel}_N \leq 1

2.8. X-norm error bounds

We define

  • the relative output error bound \Delta_N (\mu) \equiv \frac{\|\hat{e}(\mu)\|_X}{\alpha_\mathrm{lb}(\mu)}

  • the relative output effectivity \eta_N(\mu)\equiv \frac{\Delta_N(\mu)}{\|e(\mu)\|_X}

Proposition : Relative output error bound
1 \ \leq\ \eta_N(\mu) \ \leq \frac{{\gamma_{{\mathrm{UB}}}}(\mu)}{{\alpha_{{\mathrm{LB}}}}(\mu)}, \quad 1 \leq N \leq N_{\max}, \quad \forall \mu\ \in \ \mathcal{D}^\mu

2.9. Remarks on error bounds

  • The error bounds are rigorous upper bounds for the reduced basis error for any N = 1,\ldots,N_{max} and for all \mu \in \mathcal{D}.

  • The upper bounds for the effectivities are

    • independent of N , and

    • independent of \mathcal{N} if \alpha_{\mathrm{lb}}(\mu) only depends on \mu, and are thus stable with respect to RB and FEM refinement.

  • Results for energy norm (and X-norm) bound directly extend to noncompliant (& nonsymmetric) problems

    • if we choose an appropriate definition for the energy (and X) norm

3. Offline-Online decomposition

Denote \hat{e}(\mu)\in X ||\hat{e}(\mu)||_X = \varepsilon_N(\mu) = ||r(u_N(\mu),\cdot;\mu)||_X such that (\hat{e}(\mu),v)_X = -r(u_N(\mu),v;\mu), \quad \forall v \in X.

And recall that -r(u_N(\mu),v;\mu) = f(v) - \displaystyle\sum_{q=1}^Q \sum_{n=1}^N\ \Theta^q(\mu)\ {u_N}_n(\mu)\ a^q( \zeta_n,v), \quad \forall v\ \in\ X

  • It follows next that \hat{e}(\mu)\in X satisfies

(\hat{e}(\mu),v)_X = f(v) - \displaystyle\sum_{q=1}^Q \sum_{n=1}^N\ \Theta^q(\mu)\ {u_N}_n(\mu)\ a^q( \zeta_n,v), \quad \forall v\ \in\ X
  • Observe then that the rhs is the sum of products of parameter dependent functions and parameter independent linear functionals, thus invoking linear superposition

\hat{e}(\mu)\ = \ \mathcal{C} - \sum_{q=1}^Q \sum_{n=1}^N\ \Theta^q(\mu)\ {u_N}_n(\mu)\ \mathcal{L}^q_n

where

  • \mathcal{C} \in X satisfies (\mathcal{C},v) = f(v), \forall v \in X

  • \mathcal{L} \in X satisfies (\mathcal{L}^q_n,v)_X = -a^q(\zeta_n,v), \forall v \in X, \, 1 \leq n \leq N, 1 \leq q \leq Q which are parameter independent problems

3.1. Error bounds

From a previous equation, we get

Error bound decomposition
||\hat{e}(\mu)||_X^2 = (\mathcal{C},\mathcal{C})_X + \sum_{q=1}^Q \sum_{n=1}^N\ \Theta^q(\mu)\ {u_N}_n(\mu)\ \displaystyle \left( 2 ( \mathcal{C}, \mathcal{L}^q_n)_X + \sum_{q'=1}^{Q'} \sum_{n'=1}^{N'}\ \Theta^{q'}(\mu)\ {u_N}_{n'}(\mu)\ ( \mathcal{L}^{q}_{n}, \mathcal{L}^{q'}_{n'})_X \right)

Remark In (Error bound decomposition), ||\hat{e}(\mu)||_X^2 is the sum of products of

  • parameter dependant (simple/known) functions and

  • parameter independant inner-product,

the offline-online for the error bounds is now clear.

3.2. Steps and complexity

Offline :

  • Solve for \mathcal{C} and \mathcal{L}^q_n,\ 1 \leq n \leq N,\ 1 \leq q \leq Q

  • Form and save (\mathcal{C},\mathcal{C})_X, ( \mathcal{C}, \mathcal{L}^q_n)_X and ( \mathcal{L}^{q}_{n}, \mathcal{L}^{q'}_{n'})_X, 1 \leq n,n' \leq N,\ 1 \leq q, q' \leq Q

Online :

  • Given a new \mu \in \mathcal{D}^\mu

  • Evaluate the sum ||\hat{e}(\mu)||_X^2 (Error bound decomposition) in terms of \Theta^q(\mu) and {u_N}_n(\mu)

  • Complexity in O(Q^2 N^2) independent of \mathcal{N}

4. Sampling strategy: a Greedy algorithm

4.1. Offline-Online Scenarii

Offline : Given a tolerance \tau, build S_N and W_N such that \forall \ \mu\ \in \mathcal{P} \equiv \mathcal{D}^{\mu} \ , \ \Delta_N(\mu) < \tau

Online : Given \mu and a tolerance \tau, find N^* and thus s_{N^*}(\mu) such that N^* = \operatorname{arg\ max}_N\ \left( \Delta_{N}(\mu) < \tau \right), or given \mu and a max execution time T, find N^* and thus s_{N^*}(\mu) s.uch that N^* = \operatorname{arg\ min}_N\ \left( \Delta_{N}(\mu) \mbox{ and execution time } < T \right)

4.2. S_N and W_N Generation Strategies

Offline Generation

Offline Generation
  • Input : a tolerance \epsilon, set N = 0 and S_0 = \emptyset

  • While \Delta_N^{\mathrm{max}}> \epsilon

    • N = N+1

    • If N == 1; then Pick ((log-)randomly) \mu_1 \in \mathcal{D}^\mu

    • Build S_N:= \{ \mu_N \} \cup S_{N-1}

    • Build W_N:= \{ \xi = u(\mu_N) \} \cup W_{N-1}

    • Compute \Delta_N^{\mathrm{max}}:= \mathrm{max}_{\mu \in \mathcal{D}^\mu}\, \Delta_N(\mu)

    • \mu^{N+1} := \operatorname{arg\ max}_{\mu\in\mathcal{D}^\mu} \Delta_N(\mu)

  • End While

Condition number : recall that the \zeta_n are orthonormalizes, this ensures that the condition number will stay bounded by \gamma(\mu)/\alpha(\mu).

4.3. Online Algorithm I

\mu adaptive online
  • Input : \mu \in \mathcal{D}^\mu

  • Compute (s_{N^{*}}(\mu), \Delta_{N^{*}}(\mu)) such that \Delta_{N^{*}}(\mu) < \tau.

  • N = 2

  • While \Delta_N(\mu) > \tau

    • Compute (s_N(\mu), \Delta_N(\mu)) using (S_N,W_N)

    • N = N * 2 use the (very) fast convergence properties of RB

  • End While

4.4. Online Algorithm II

Offline
  • While i \leqslant \mathrm{Imax} \gg 1

    • Pick log-randomly \mu \in \mathcal{D}^\mu

    • Store in table \mathcal{T}, \Delta_N(\mu) if worst case for N=1,..., {N^{\mathrm{max}}}

    • i = i + 1

  • End While

Online Algorithm II – \mu adaptive online – worst case
  • Given \mu \in \mathcal{D}^\mu, compute (s_{N^{*}}(\mu), \Delta_{N^{*}}(\mu)) such that \Delta_{N^{*}}(\mu) < \tau.

  • N^{*} := \mathrm{arg} \mathrm{max}_{\mathcal{T}}\, {\Delta_N(\mu) \, < \, \tau}

  • Use W_{N^{*}} to compute (s_{N^{*}}(\mu),\Delta_{N^{*}}(\mu))